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The computational fluid dynamics coupled with the discrete element method is widely em-
ployed to simulate particle-fluid interactions in solid-liquid flows. The restrictions imposed
by the CFD-DEM scheme to very fine meshes contribute to a scant amount of numerical
results of particle settling in viscoplastic fluids. This paper presents the two-way coupling
CFD-DEM simulation of the particle sedimentation in a quiescent Bingham fluid. The re-
sults for terminal particle velocity showed good agreement with the experimental data.
Owing to the viscoplastic behavior of the fluid, low values of the relaxation parameter of
the solid-phase must be specified to obtain accurate results.
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1. Introduction

The behavior of solid particles as they settle in liquid-phases is of particular importance in
the modeling of solid-liquid flows. An example is the particle transport in oil wellbore drilling
operations using viscoplastic fluids, where the primary purpose is to carry as many particles
as possible (Saha et al., 1992). Depending on the flow conditions and particle properties, the
gravitational force influences formation of the solid bed, leading to pipe blocking, interruption
of the flow, excessive pressure loss and problems due to particle agglomeration (Akhshik et al.,
2016).

The non-Newtonian fluids exhibit shear rate-dependent viscosity, meaning that the math-
ematical modeling is highly complex. The effect of fluid compressibility (Oliveira et al., 2013)
further increases complexity of the analysis in some applications. As the fluidization behavior of
the liquid-phase demands proper characterization, the numerical modeling of particle settling in
polymeric fluids deserves particular attention. Among the numerical methods to conduct sim-
ulations of solid-liquid flows, the coupling between the computational fluid dynamics and the
discrete element method (CFD-DEM) is convenient to model particle interactions with adjacent
particles and solid boundaries, including the flow field structure (Cundall and Strack, 1979).

Usually, the CFD-DEM scheme is employed when many particles take part in the compu-
tational domain. However, the adoption of the CFD-DEM to simulate the settling of a single-
-particle is fundamental to verify capability of the method to reproduce the phenomena that
occur in the flow field of viscoplastic fluids. The CFD-DEM is considered a more favorable
scheme regarding numerical accuracy and computational requirement when compared with di-
rect numerical simulation (DNS) and coarse-grained methods (Cocco et al., 2017). In the DEM
formulation, it is possible to consider the particle size and density distribution in simulations,
moreover, the parameters that influence interactions among the particles and solid boundaries
(Tsuji et al., 1993).
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The CFD-DEM with two-way coupling is useful when the interactions between the particles
and the fluid influence the flow field behavior. The Eulerian-Lagrangian approach comprises a
discrete description of the particle and a continuous delineation of the liquid-phase (Deen et
al., 2007). The viscosity of the Generalized Newtonian Fluids depends on the magnitude of the
second invariant of the rate of the strain tensor (Bird et al., 1983). Thus, one can presume that
the two-way coupling scheme is essential for the numerical modeling of the solid-liquid flow with
viscoplastic fluids.
There are worthwhile studies concerning the numerical modeling of particle sedimentation.

Nonetheless, one can observe a shortage of CFD-DEM simulations of particle settling in vis-
coplastic fluids. Presumably, the lack of data is due to limitations of the method. The cell
volume of the mesh must be larger than the particle volume. This restriction induces inaccurate
results for particles with a considerable diameter. In addition, the strong interaction between the
solid and viscoplastic liquid-phase contributes to instabilities in the CFD-DEM numerical solver.
Thus, it is necessary to employ an under-relaxation parameter of the two-way coupling scheme
after a proper analysis in this paper. In this context, this paper seeks to present procedures
that provide feasible results from simulations of a single spherical particle in a quiescent Bing-
ham fluid, considering the two-way coupling CFD-DEM scheme and the two-grid formulation
available in STAR-CCM+ software (CD-Adapco, 2018). The validation of the numerical scheme
occurs through the experimental results for the particle settling in a Bingham fluid (Valentik
and Whitmore, 1965).

2. Mathematical and numerical modeling

2.1. Fluid rheology

The behavior of viscoplastic fluids is such that the deformation of fluid elements occurs
after exceeding a specific yield stress level. The continuous phase considered in this work is
a generalized Newtonian Bingham fluid. The constitutive form of the two-parameter Bingham
model gives the deviatoric part of the stress tensor τ according to Eq. (2.1) (Macosko, 1994)

τ = 2
(

µ0 +
τ0

√

|II2D|
)

D for |IIτ | > τ2y (2.1)

where D is the rate of the strain tensor according to Eq. (2.2), IIτ the second invariant of the
stress tensor, Eq. (2.3)1, τ0 the fluid yield stress, µ0 the plastic viscosity of the Bingham fluid,
II2D the second invariant of the rate of the strain tensor, Eq. (2.3)2

D =
1

2
[∇uf + (∇uf )T] (2.2)

and where uf is the fluid velocity vector

IIτ =
1

2
[( trτ )2 − trτ 2] II2D =

1

2
[( tr 2D)2 − tr (2D)2] (2.3)

The yield stress τ0 is a feature of Bingham fluids that influences the behavior of the liquid-
-phase. The yield stress is the fundamental characteristic when the material is in a structured
state. When the material flows, the dynamic yield stress becomes the meaningful aspect. The
Bingham number is the ratio between the plastic and viscous effects according to (Bird et al.,
1983)

Bn =
τ0dp

µ0|uf − up|
(2.4)
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The Hedström number in Eq. (2.5) represents the ratio of yield-inertia effects to viscous
stresses and characterizes the behavior of viscoplastic fluids as it combines plastic viscosity and
yield stress in a single parameter

He =
ρfτ0d

2
p

µ20
(2.5)

The Bingham fluid is in an unyielded condition
√
II2D = 0 for |IIτ | ¬ τ20 , and there is a

lack of smoothness in the transition between the yielded and unyielded behavior of the material,
leading to inaccurate results at low strain rates. The following dual-viscosity model is considered
an excellent approximation for the Bingham apparent viscosity function to be used in numerical
modeling of the fluid flow (Beverly and Tanner, 1989)

η(γ̇) =























ηr for
√

|II2D| ¬ γ̇c

µ0 +

τ0
(

1− µ0
ηr

)

√

|II2D|
for

√

|II2D| > γ̇c
(2.6)

where ηr is the reference viscosity, and γ̇c the critical shear rate. The dual-viscosity model
requires the viscosity ηr as large as possible to develop a critical shear rate as small as possible
(Glowinski and Wachs, 2011). It is necessary to mention that Eq. (2.6) incorporates a slight
modification used by STAR-CCM+ (CD-Adapco, 2018) when compared to its original form.
Numerical studies of the Bingham fluid flow suggest that ηr must be equal or higher than 10

4µ0
to avoid problems with misleading velocity fields originated when using the biviscosity model of
Eq. (2.6). The stress tensor is given by

τ = 2η(γ̇)D (2.7)

As it is not possible to model the absolute fluid rigidity, the critical shear rate γ̇c can be
used to describe the stress in unyielded regions according to (Prashant and Derksen, 2011)

γ̇c =
τ0

ηr − µ0
(2.8)

The average shear rate γ̇p is defined considering the motion of a solid sphere into the liquid
phase over the entire particle surface, according to (Lali et al., 1989)

γ̇p =
|uf − up|
dp

(2.9)

where up is the particle settling velocity vector, and dp the particle diameter.

2.2. Forces on a particle under settling conditions

Figure 1 illustrates the sketch of a spherical particle settling in a quiescent fluid. The gravi-
tational force Fg that acts on the particle is given by

Fg = ρpVpg (2.10)

and is counteracted by the buoyancy force Fb according to

Fb = −ρfVpg (2.11)

where ρp and ρf are the particle and fluid densities, respectively, g is the vector of gravitational
acceleration, and Vp is the particle volume.
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Fig. 1. Forces on a settling spherical particle

The resistance force on the particle is the summation of the pressure and friction drag given
by

Fd =
1

2
ρfCdAp|uf − up|(uf − up) (2.12)

where Cd is the particle drag coefficient, and Ap is the normal projection of the particle area to
the direction of the fluid velocity. The correlation given in Eq. (2.13) was implemented in the
software to calculate the drag coefficient on the particle for the Bingham fluid (Dedegil, 1987)

Cd =



























24

Rep,Bn
for Rep,Bn ¬ 8

22

Rep,Bn
+ 14 for 8 < Rep,Bn ¬ 150

0.4 for Rep,Bn > 150

(2.13)

where Rep,Bn represents the particle Reynolds number for the Bingham fluid according to

Rep,Bn =
ρf |uf − up|2
τ0 + γ̇pµ0

(2.14)

Equation (2.14) is a satisfactory choice because the fluid yield stress is present in the model-
ing. It is essential to define that inertial effects are negligible for Rep,Bn ≪ 1, on the other hand,
when Rep,Bn ≫ 1, the inertial effects dictate the flow behavior (Thompson and Soares, 2016).

2.3. Discrete element method formulation

The DEM scheme describes the solid-phase motion through the explicit numerical scheme
that considers the interactions between particles and solid boundaries for each contact pair,
where Newton’s second law is employed to model the movement of the solid-phase. The linear
and angular momentum balance equations of the particle are (Cundall and Strack, 1979)

mp
d

dt
up = −Vp∇p+ FC + FB +FSL Ip

d

dt
ωp = Tp (2.15)

where mp is the particle mass, p – pressure, FC – contact forces among particles and solid
boundaries (not considered in this paper, as a single particle is injected in the domain and
there are no interactions with solid boundaries), FB – body forces acting on the particle, FSL –
interaction forces between the solid and liquid phases – the drag force from Eq. (2.12), Ip is the
particle moment of inertia, ωp – particle angular velocity, and Tp any torque on the particle.
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2.4. Balance equations of the continuum phase

For the liquid-phase an incompressible fluid is assumed and the differential equations for the
mass and momentum balance are

ρf
∂

∂t
Cf +∇ · ρf (Cfuf ) = 0 (2.16)

and

ρf
∂

∂t
(Cfuf ) + ρf (Cfuf · ∇uf ) = −(Cf∇p) + (∇ · Cfτ ) + Cfρfg +Mimt (2.17)

where Cf is the volume fraction of the liquid-phase, τ – viscous stress tensor, and Mimt the
interphase momentum transfer, Eq. (2.18) (Crowe et al., 2012). The volume fraction of the solid
phase is Cs. It follows that Cf = 1−Cs. The interphase momentum transferMimt in Eq. (2.17)
represents the summation of the interaction forces FSL on the solid-phase S due to the liquid
phase L in each fluid cell volume V , and given by

Mimt =
∑

V

FSL (2.18)

The interaction force FSL in Eq. (2.18) can be interpreted as the drag force Fd on the
particle. In the CFD-DEM two-way coupling scheme, the contact forces that the phases exert
one on another are calculated using the interphase momentum transfer Mimt as (Crowe et al.,
2012)

Mimt =
1

Vvc

∑

Np

Fd (2.19)

where Vvc is the virtual cell volume, see Fig. 2a, Np is the number of particles inside any virtual
cell.
Figure 2a demonstrates the two-grid model of the CFD-DEM scheme on which the equations

expressing the fluid-particle coupling are based. The balance equations of the continuous phase
are solved by the finite volume method (Patankar, 1980) and discretized in the fluid cells. The
modeling of the solid-phase occurs according to the virtual cell, which contains a group of small
fluid cells (Deb and Tafti, 2013). The interaction forces between the solid and liquid-phases are
calculated in the virtual cell. The contribution of the momentum is distributed over the fluid
cells considering the volume fraction Cf of the liquid phase. The velocity field is calculated on
the fluid cell grid and mapped to the virtual cell grid for the interphase momentum exchange,
and the solid fraction and momentum interphase exchange terms are calculated on the particle
grid (virtual cell) and mapped back to the fluid grid (fluid cell). The parameter cell cluster scale
Ccs is defined as a multiple of the largest fluid cell length Lfc, and employed to find the length
of the virtual cell as

Lvc = CcsLfc (2.20)

The volume fraction of the solid phase in the virtual cell is given by

Cs,vc =
1

Vvc

∑

Np

Vp (2.21)

where Vp represents the particle volume. The volume fraction of the solid-phase is high in the
fluid cells grid early in the sedimentation, which contributes to solver instability. This instability
is related to the perturbation introduced by the elevated value of the interphase momentum
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Fig. 2. (a) Two-grid scheme of the CFD-DEM two-way coupling. Lfc is the fluid cell size, and Lvc is the
virtual cell size. (b) Computational domain for numerical simulations of the particle settling

term Mimt and the low volume fraction of the fluid Cf in Eq. (2.17), which are responsible for
increasing numerical residuals. The size of this perturbation depends on the level of coupling
between the solid and liquid-phases (Kohnen et al., 1994). There is a strong interaction between
the solid and liquid-phase in solid-liquid flows with viscoplastic fluids. Therefore, to ensure a
feasible solution, the volume fraction of the solid-phase must be relaxed. The α parameter can be
employed according to Eq. (2.22) to reduce the particle volume fraction during initial iterations,
corresponding to the beginning of the sedimentation

Ci+1s = αCi+1s,vc + (1− α)Cis (2.22)

where α is the under-relaxation factor of the Lagrangian phase (solid phase) 0 ¬ α ¬ 1), Ci+1s,vc is
the Lagrangian phase volume fraction at the coupling iteration (i + 1), and Cis is the volume
fraction of solid contributed to the continuous phase in the iteration i. The solid volume fraction
under the relaxation factor in Eq. (2.22) varies in every iteration. For small values of α, the
volume fraction of the solid phase is minimal in the initial iterations, rising to a constant value
as the iterations progress.

In the two-grid scheme, the information transfer of the fluid volume fraction from the virtual
grid to the fluid grid is given by

Cfc = Ψvm→fm{Cf} (2.23)

where Cfc is the fluid volume fraction of the fluid cells inside the virtual cell, and Ψvm→fm is the
distribution function from the virtual mesh (vm) to the fluid mesh (fm). In the present study,
the mapping function is given by Ψvm→fm = 1 (Deb and Tafti, 2013), meaning that the same
value of the void fraction in the virtual cell is mapped to every fluid cell inside the virtual cell
Cfc = Cf .

2.5. Boundary and initial conditions for the particle settling problem

Figure 2b illustrates the computational fluid domain consisting of a duct with a square cross-
-section with sides Lx = Ly and height Lz. The square cross-section has been selected so that the
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mesh could have finite volumes with regular hexahedral geometry. The mesh with hexahedral vol-
umes produces low numerical diffusivity (Sosnowski et al., 2019). The wall specification incorpo-
rates the no-slip condition. The atmospheric pressure acts on the liquid at the top of the computa-
tional domain in Fig. 2b. The dimension in the y-direction Ly is the same as in the x-direction Lx.
The particle is injected at a point given by the location Lip,x = 0.5Lx = Lip,y = 0.5Ly, and in
the vertical position Lip,z = 0.8Lz . The minimum value of the vertical distance Lz is 1.5m, and
was specified allowing the particle to reach terminal velocity before coming into contact with
the bottom wall.

Equation (2.24) represents the boundary and initial conditions for the solid-phase

up,x(x; t = 0) = up,y(y; t = 0) = up,z(z = Lip,z; t = 0) = 0 (2.24)

The boundary and initial conditions for the liquid-phase are given as

uf,x(x; t = 0) = uf,y(y; t = 0) = uf,z(z; t = 0) = 0

uf,x(x = 0; t) = uf,y(y = 0; t) = uf,x(x = Lx; t) = uf,y(y = Ly; t) = 0

uf,z(z = 0; t) = 0

(2.25)

The pressure specification at the top of the computational domain Lz is the atmospheric
pressure

p(z = Lz; t) = patm (2.26)

3. Simulation data

The discrete phase consists of a solid and spherical particle with diameter dp = 9.5mm, and
density ρp = 6751 kg·m−3. The simulations in the present study consider two fluids with prop-
erties according to the experimental data (Valentik and Whitmore, 1965). Fluid 1: τ0 = 25.0Pa,
µ0 = 6.7·10−3 Pa·s, and ρp/ρf = 5.59; fluid 2: τ0 = 7.8Pa, µ0 = 4.0·10−3 Pa·s, and ρp/ρf = 5.87.
The chosen value of the reference viscosity ηr in Eq. (2.6) is ηr = 1.0 · 104, according to the
numerical results for the Poiseuille flow of the Bingham fluid illustrated in Fig. 3. The velocity
profile is better characterized for the condition ηr = 1.0 · 104µ0 and mesh configuration 5.
The size of the computational domain given in Eq. (3.1) has been employed to evaluate the

influence of the rigid walls on the numerical results

Ldom =Wd dp (3.1)

where Wd is the parameter of the wall-to-wall distance to the particle-diameter. Ldom is defined
as Lx in the x-direction and Ly in the y-direction of Fig. 2b. The dimensions of the computational
domain range from Lx = Ly = 47.5mm for Wd = 5, to Lx = Ly = 190mm for Wd = 20.

Table 1 gives the mesh parameters of the fluid and the virtual grid. The grid refinement
ratio is 0.75. The balance equations of mass and momentum of the continuous phase were
discretized with the finite volume method and the SIMPLE scheme employed in the pressure-
-velocity coupling (Patankar, 1980). The implicit unsteady solver was selected with the second-
-order temporal discretization. The point-iterative technique of Gauss-Seidel and the algebraic
multigrid method solve the discretized linear system of equations under the convergence criterion
of 10−4 for all normalized residuals. The influence of the outer iterations in the CFD-DEM
coupling was performed considering three orders of magnitude for the fluid time step ∆tf to the
particle time step ∆tp ratio given by ∆tf/∆tp = 1, ∆tf/∆tp = 10, and ∆tf/∆tp = 100 (Yao et
al., 2020).
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Fig. 3. Poiseuille flow of the Bingham fluid in a circular pipe of radius R for the following conditions:
ρf = 1207kg·m−3, τ0 = 25Pa, R = 25 · 10−3m, dp/dz = 2040Pa·m−1: (a) ηr = 1.0 · 103µ0,

(b) ηr = 1.0 · 104µ0

Table 1.Mesh configurations employed in the simulations according to the parameters in Fig. 2a

Mesh Fluid cell size Cell cluster scale Virtual cell size

M1 Lfc = 0.5dp Ccs = 3 Lvc = 3Lfc
M2 Lfc = 0.375dp Ccs = 4 Lvc = 4Lfc
M3 Lfc = 0.281dp Ccs = 5 Lvc = 5Lfc

4. Results and discussion

Figures 4a to 4c illustrate the normalized particle velocity versus time step of the liquid
phase for Wd = 5 to Wd = 20 and mesh configurations M1 to M3. As the particle volume is
larger than the fluid cell volume, the mesh refinement study must ensure that the volume of the
virtual cell is larger than the particle volume by changing the parameter Ccs. The examination of
Figs. 4a to 4c reveals the wall domain influence on the results, and that the intermediate mesh M2
(Lfc = 0.375dp) with Ccs = 4.0, theWd = 10 and the maximum fluid time step ∆tf = 2.0·10−3 s
are suitable to yield accurate numerical results for the particle terminal velocity. The maximum
error in the particle terminal velocity compared with the experimental values is around ±5%,
indicating that the two-grid scheme is suitable to model the particle settling in viscoplastic fluids
using the two-way coupling CFD-DEM.

It is evident that for simulations with small fluid cell volumes, the numerical results for
particle settling velocity are near the experimental data, indicating how the correct choice of the
mesh size is essential to obtain accurate numerical results. While simulations of the Bingham
fluid flow demand meshes with small volume elements for better characterization of the viscosity
function, the CFD-DEM requires that the volume of the fluid cell be greater than the particle
volume to reduce numerical instabilities. When the particle volume is greater than the volume
of the fluid cell element, the two-grid scheme is suitable for simulating viscoplastic solid-liquid
flows. For fine grids, the virtual cell must be larger than the fluid cell to ensure a suitable volume
fraction and accurate drag modeling.

Meshes with smaller elements M3 < M2 < M1 produce more accurate results when com-
pared with the experimental data for all the values of Wd ratio. The upper and lower limits
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Fig. 4. Normalized particle velocity vs. fluid time step for ∆tf/∆tp = 1: (a) mesh M1, (b) mesh M2,
(c) mesh M3, (d) influence of the outer iterations considering the time step ratio ∆tf/∆tp

of ±5% represent the maximum relative errors when the numerical results are compared with
the normalized experimental value 1.0. The Ccs value depends on the fluid mesh size and particle
volume, and must consider the void fraction for the liquid phase in the continuous-phase mesh,
i.e., the volume occupied by the particle in the fluid cell element.

A likely explanation for finding that the particle velocity increases with mesh refinement is
that since viscosity is a function of the strain-rate, a finer mesh characterizes the velocity gradient
better, leading to more accurate results, as illustrated in Figs. 4a to 4c. As the numerical results
approximate the experimental results when finer meshes are employed with larger values of Ccs
parameter, the virtual cell length Lvc must be carefully specified to ensure satisfactory results
in numerical simulations when using meshes with small volume elements. If grid refinement
is employed, a larger Ccs value is mandatory to increase the virtual cell length so that the
shear rate and viscosity function are modeled accurately. The optimum value for the virtual cell
length Lvc must cover the particle diameter. However, it depends on the fluid cell length by the
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Ccs parameter. So, the best choice of the virtual cell length is related to the optimum size of the
fluid cell length.

The unusual results of the particle velocity for lower Wd values are intriguing in Figs. 4b
and 4c. These results represent simulations with smaller grid sizes – meshes M2 and M3. The-
oretically, the further the distance between the particle surface and rigid boundary walls, the
greater the particle terminal velocity should be due to the lesser confinement effect, at least
for the Stokes condition (Atapattu et al., 1995). The results obtained in this work show that
when the particle is positioned near the wall, the terminal velocity is higher and approaches the
experimental value. The possible reason is the extension and proximity of the yielded surface
of the fluidized region to the wall. The no-slip condition at the rigid walls plays a significant
influence on the fluidized region surrounding the particle and, hence, on the particle terminal
velocity.

An important parameter to be analyzed in the CFD-DEM scheme is the coupling level found
by using the fluid to particle time step ratio ∆tf/∆tp. Low values of the ∆tf/∆tp denote low
efficiency in the CFD-DEM coupling (Yao et al., 2020). Figure 4d illustrates the influence of
∆tf/∆tp on the simulation results. If lower values of the fluid time step ∆tf are employed, higher
values of ∆tf/∆tp – or smaller values for the particle time step ∆tp – are required to generate
numerical results nearest the experimental one. This behavior agrees with numerical results in
the literature (Yao et al., 2020).

Figure 5a illustrates the behavior of the particle velocity vs. time for He = 6.067 · 104 and
Bn = 52.1, and in Fig. 5b for He = 5.055 · 104 and Bn = 14.7. The under-relaxation factor α
of the Lagrangian phase in Eq. (2.22) had a significant influence on the accuracy and numerical
stability of the results for values of ranging from 1.0 · 10−3 to 1.0. The numerical results of the
particle velocity exhibit excellent stability for α < 1.0 · 10−2.

Fig. 5. Particle velocity vs. time for different values of the parameter Wd = 10, mesh M2:
(a) Rep,Bn = 21.9, Bn = 52.1, He = 6.067 · 104; (b) Rep,Bn = 219, Bn = 14.7, He = 5.055 · 104. up and
up,exp are the numerical and experimental particle velocities, respectively. tmax is the maximum

simulation time required for the particle to reach the terminal velocity

Inconsistent movements of the particle were observed for α > 1.0 · 10−2, as shown in Fig. 5.
Therefore, to ensure stable simulations, a value of α = 5.0 · 10−3 was employed in all numerical
analyses. The behavior of the particle velocity versus time agrees qualitatively with the numerical
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results obtained in the particle settling study with the Lattice-Boltzmann scheme (Prashant and
Derksen, 2011).
The influence of the fluid yield stress on the particle velocity is more apparent for higher

values of Bn and α. This can be seen comparing the two Bingham numbers in Fig. 5. The unstable
behavior of the particle settling velocity for α > 1.0 ·10−2 Fig. 5a is associated with the influence
of the fluid yield stress during the particle injection at the beginning of the simulation due to
the strong interaction between the solid and liquid-phases (Kohnen et al., 1994). Moreover, it is
essential to mention that the specification of smaller values of the under-relaxation parameter
α ¬ 1.0 · 10−3 worsens the results of the particle settling velocity. If the α parameter is too
small, the volume occupied by the particle in the fluid cells is moderate along time, according
to Eq. (2.22). Thus, the body forces acting on the particle are small, affecting the settling
velocity. One can infer that the selection of the under-relaxation parameter must not be aleatory,
demanding proper analysis.
Figure 6 illustrates the fluid shear stress field, including the yielded and unyielded regions

around the particle settling in the Bingham fluid for (a) Bn = 52.1 and (b) Bn = 14.7. The
outermost zone around the particle corresponds to the yielded liquid-phase until reaching the
limit called yield surface. The normalized isostress line τ/τ0 = 1.0 indicates the unyielded
condition of the liquid-phase.

Fig. 6. Shear stress field for Wd = 10, mesh M3, and ∆tf = 1.0 · 10−3 s: (a) Rep,Bn = 21.9, Bn = 52.1,
He = 6.067 · 104; (b) Rep,Bn = 219, Bn = 14.7, He = 5.055 · 104

Figure 7 illustrates the rate of the strain tensor field around the particle that settles in a
quiescent Bingham fluid for (a) Bn = 52.1 and (b) Bn = 14.7. The numerical results agree qual-
itatively well with other numerical data in the literature (Glowinski and Wachs, 2011; Prashant
and Derksen, 2011). The fore-aft asymmetry in the strain-rate field is caused by inertial effects.
The Stokes number St = ρpγ̇r

2/3.5µ0 represents the ratio of the characteristic kinetic energy of
the particle to the characteristic viscous energy associated with motion of the particle through
the fluid (Coussot, 2005). For the conditions simulated in this paper, the Stokes number is 122,
meaning that the fluid has very limited influence on particle motion.
It is possible to see the influence of the yield stress on the fluidized region encompassing the

particle. For the fluid with high yield stress (Bn = 52.1), the extension of the yielded region is
minor when observing the distance of the yield surface from the particle limits. The last behavior
was also reported in the numerical analysis of particle settling in viscoplastic fluids using the
Lattice-Boltzmann scheme (Prashant and Derksen, 2011). The liquid-phase behavior in Fig. 7
agrees with the Bingham fluid theory, which exhibits two distinct responses depending on the
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Fig. 7. Strain-rate tensor field for Wd = 10, mesh M3, and ∆tf = 1.0 · 10−3 s: (a) Rep,Bn = 21.9,
Bn = 52.1, He = 6.067 · 104; (b) Rep,Bn = 219, Bn = 14.7, He = 5.055 · 104

magnitude of the strain-rate. For a shear rate lower than the critical value γ̇c in Eq. (2.8), the
fluid exhibits solid-like behavior (unyielded) and has a high viscosity value given by as expected
from Eq. (2.6). In contrast, in regions with high shear rates, the flow assumes Newtonian behavior
(yielded) (Macosko, 1994).

5. Conclusions

The numerical modeling of the particle sedimentation in a Bingham fluid carried out in this
paper was successful. The two-way CFD-DEM coupling scheme, including the two-grid approach,
proved to be feasible to simulate the solid-liquid flow of a viscoplastic fluid for a particle volume
higher than the fluid cell volume. Therefore, it is possible to surpass the mesh size limitation of
the CFD-DEM.

Numerical results show that the finer mesh M3 with fluid cell size Lfc = 0.281dp, and cell
cluster scale Ccs = 5 generates the particle terminal velocity nearer to 1.0, the value correspond-
ing with experimental observations. Nonetheless, it is possible to employ an intermediate mesh
configuration M2 − Lfc = 0.375dp, and Ccs = 5 to obtain a compromise between results with
high accuracy and low computational effort. One can state that using a low value in the relax-
ation factor of the solid-phase α is essential to achieve both numerical stability and accuracy in
the numerical modeling of particle settling. The condition above is meaningful when there is a
substantial interaction between the liquid and solid-phases, characterized by a fluid with high
yield stress τ0.

The size of the computational domain has an insignificant influence on the numerical results
for the condition Wd  10. The yield and unyielded surfaces were recognized in all situations,
showing that the two-way coupling CFD-DEM simulation was able to characterize the viscoplas-
tic behavior of the Bingham fluid in the sedimentation problem. The extension of the yielded
and unyielded regions agrees qualitatively well with those reported in similar numerical studies.
The fore-aft and radial asymmetry in the stress and rate of the strain tensor fields result from
dynamic effects due to the moderate particle Reynolds number. In conclusion, CFD-DEM with
a two-way coupling scheme is considered suitable for the modeling of the particle settling in a
Bingham fluid as long as the precautions discussed in this paper are taken into account.
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